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Abstract. To account quantitatively for many reported “natural” fat tail distributions in Nature and
Economy, we propose the stretched exponential family as a complement to the often used power law
distributions. It has many advantages, among which to be economical with only two adjustable parameters
with clear physical interpretation. Furthermore, it derives from a simple and generic mechanism in terms
of multiplicative processes. We show that stretched exponentials describe very well the distributions of
radio and light emissions from galaxies, of US GOM OCS oilfield reserve sizes, of World, US and French
agglomeration sizes, of country population sizes, of daily Forex US-Mark and Franc-Mark price variations,
of Vostok (near the south pole) temperature variations over the last 400 000 years, of the Raup-Sepkoski’s
kill curve and of citations of the most cited physicists in the world. We also discuss its potential for
the distribution of earthquake sizes and fault displacements. We suggest physical interpretations of the
parameters and provide a short toolkit of the statistical properties of the stretched exponentials. We also
provide a comparison with other distributions, such as the shifted linear fractal, the log-normal and the
recently introduced parabolic fractal distributions.

PACS. 02.50.+r Probability theory, stochastic processes and statistics – 89.90.+n Other areas of general
interest to physicists – 01.75.+m Science and society

1 Introduction

Frequency or probability distribution functions (pdf) that
decay as a power law of their argument

P (x)dx = P0x
−(1+µ)dx (1)

have acquired a special status in the last decade. They
are sometimes called “fractal” (even if this term is more
appropriate for the description of self-similar geometri-
cal objects rather than statistical distributions). A power
law distribution characterizes the absence of a character-
istic size: independently of the value of x, the number of
realizations larger than λx is λ−µ times the number of
realizations larger than x. In contrast, an exponential for
instance or any other functional dependence does not en-
joy this self-similarity, as the existence of a characteristic
scale destroys this continuous scale invariance property [1].
In words, a power law pdf is such that there is the same
proportion of smaller and larger events, whatever the size
one is looking at within the power law range.

a e-mail: sornette@naxos.unice.fr
b CNRS UMR 6622

The asymptotic existence of power laws is a well-
established fact in statistical physics and critical phenom-
ena with exact solutions available for the 2D Ising model,
for self-avoiding walks, for lattice animals, etc. [2], with
an abundance of numerical evidence for instance for the
distribution of percolation clusters at criticality [3] and for
many other models in statistical physics. There is in addi-
tion the observation from numerical simulations that sim-
ple “sandpile” models of spatio-temporal dynamics with
strong non-linear behavior [4] give power law distribu-
tions of avalanche sizes. Furthermore, precise experiments
on critical phenomena confirm the asymptotic existence
of power laws, for instance on superfluid helium at the
lambda point and on binary mixtures [5]. These are the
“hard” facts.

On the other hand, the relevance of power laws in
Nature is less clear-cut even if it has repeatedly been
claimed to describe many natural phenomena [1,6,7]. In
addition, power laws have also been proposed to apply to
a vast set of social and economic statistics [8–14]. Power
laws are considered as one of the most striking signatures
of complex self-organizing systems [15,16]. Empirically, a
power law pdf (1) is represented by a linear dependence
in a double logarithmic axis plot (a log-log plot for short)
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of the frequency or cumulative number as a function of
size. However, logarithms are notorious for contracting
data and the qualification of a power law is not as straight-
forward as often believed. Claims have thus been made on
the power law dependence of many data that have or will
probably not survive a closer scrutiny. See for instance
[17,18] which point out that disorder and irregular bound-
aries may lead to apparent scaling over two decades. See
also [19] which points out that the scaling range of exper-
imentally declared fractality in laboratory experiments is
extremely limited as most log-log plots show a straight
portion typically over only 1.3 order of magnitude.

In general, in all power laws of critical phenomena, we
observe them only asymptotically, i.e. with infinite purity,
infinite temperature control, infinitely large computer sim-
ulations, waiting infinitely long for equilibration, and mak-
ing gravity effects infinitely small by going into space. This
was called Asymptopia by R.A. Ferrell about thirty years
ago. In any real experiment or simulation, there are de-
viations from Asymptopia and thus deviation from power
laws. Our paper is not about these unavoidable but redu-
cable observation errors, but claims that even infinitely ac-
curate experimental preparations and observations in our
examples treated below give important deviations from
power laws.

Thus, in any finite critical system, it is well-known that
the power law description must give way to another regime
dominated by finite size effects [20] and the pdf’s in gen-
eral cross over to an exponential decay, which leads to a
curvature in the log-log plots. Log-log plots of data from
natural phenomena in Nature and Economy often exhibit
a limited linear regime followed by a significant curvature.
The outstanding question is whether these observed devi-
ations from a power law description result simply from a
finite-size effect or does it invade the main body of the
distribution, thus calling for a more fundamental under-
standing and also a completely different quantification of
the pdf’s. The first hypothesis has often been suggested for
instance for the Gutenberg-Richter distribution of earth-
quake sizes: if the power law distribution was extrapolated
to infinite sizes, it would predict an infinite mean rate of
energy release, which is clearly ruled out in a finite earth.
Similarly, the extrapolation of the distribution of the dis-
persed habitat of oilfield reserves gives an infinite quantity
of oil. This is clearly ruled out in a finite earth and a cross-
over to another regime is called for. The fact that most of
the natural distributions display a log-log curved plot [21],
avoiding the divergence and leading to thinner tails than
predicted by a power law, has mostly been interpreted in
terms of finite-size effects.

Here, we explore and test the hypothesis that the cur-
vature observed in log-log plots of distributions of sev-
eral data sets taken from natural and economic phenom-
ena might result from a deeper departure from the power
law paradigm and might call for an alternative description
over the whole range of the distribution. The choice of a
given mathematical class of distributions corresponds to
a “model” in the following sense. In its broadest sense,
a model is a mathematical representation of a condition,

process, concept etc., in which the variables are defined to
represent inputs, outputs, and intrinsic states and inequal-
ities are used to describe interactions of the variables and
constraints on the problem. In theoretical physics, models
take a narrower meaning, such as in the Ising, Potts, ...,
percolation models. For the description of natural and of
economic phenomena, the term model is usually used in
the broadest sense that we take here.

The model that we test is provided by the recent
demonstration that the tail of pdf’s of products of a fi-
nite number of random variables is generically a stretched
exponential [22], in which the exponent c is the inverse of
the number of generations (or products) in a multiplica-
tive process. We thus propose an alternative model for
pdf’s for natural and economic distributions in terms of
stretched exponentials:

P (x)dx = c(xc−1/xc0) exp[−(x/x0)c]dx, (2)

such that the cumulative distribution is

Pc(x) = exp[−(x/x0)c]. (3)

Stretched exponentials are characterized by an exponent c
smaller than one. The borderline c = 1 corresponds to the
usual exponential distribution. For c smaller than one, the
distribution (3) presents a clear curvature in a log-log plot
while exhibiting a relatively large apparent linear behav-
ior, all the more so, the smaller c is. It can thus be used
to account both for a limited scaling regime and a cross-
over to non-scaling. When using the stretched exponential
pdf, the rational is that the deviations from a power law
description is fundamental and not only a finite-size cor-
rection.

We find that the stretched exponential (2, 3) provides
an economical description as it depends on only two mean-
ingful adjustable parameters with clear physical interpre-
tation (the third one being an unimportant normalizating
factor). It accounts very well for the distribution of radio
and light emissions from galaxies (Fig. 2), of US GOM
OCS oilfield reserve sizes (Figs. 3, 4), of World, US and
French agglomeration sizes (Figs. 5-8), of the United Na-
tion 1996 country sizes (Fig. 9), of daily Forex US-Mark
and Franc-Mark price variations (Figs. 10, 11), and of the
Raup-Sepkoski’s kill curve (Fig. 12), Even the distribu-
tion of biological extinction events [23] is much better ac-
counted for by a stretched exponential than by a power
law (linear fractal). We also show that the distribution of
the largest 1300 earthquakes in the world from 1977 to
1992 (Fig. 13) and the distribution of fault displacements
(Fig. 14) can be well-described by a stretched exponential.
We also study the temperature variations over the last
420 000 years obtained for ice core isotope measurements
(Fig. 15). Finally, we examine the distribution of citations
of the most cited physicists in the world and again find a
very fit by a stretched exponential (Fig. 16).

We do not claim that all power law distributions have
to be replaced but that observable curvatures in log-log
plots that are often present may signal that another sta-
tistical representation, such as a stretched exponential, is
better suited. This in turn may inspire the identification
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Fig. 1. Comparison between parabolic fractal, shifted linear fractal, lognormal and stretched exponential fitted up to rank 500.

of a relevant physical mechanism. Among the possible can-
didates, stretched exponentials are particularly appealing
because, not only do they provide a simple and economi-
cal description but, there is a generic mechanism in terms
of multiplicative processes. Multiplicative processes often
constitute zeroth-order descriptions of a large variety of
physical systems, exhibiting anomalous pdf’s and relax-
ation behaviors.

Stretched exponential laws are familiar in the context
of anomalous relaxations in glasses [24] and can be de-
rived from a multiplicative process [22]. The Ising fer-
romagnet in two dimensions was also predicted to relax
by a stretched-exponential law [25]. This was confirmed
numerically [26] and by improved arguments [27]. It has
been claimed that the effect also exists in three dimen-
sions [28] but is not confirmed numerically (D. Stauffer,
private communication). The theory is based on the ex-
istence of very rare large droplets (heterophase fluctua-
tions). Ising models deal with interacting spins and thus
dependent random variables. This may be transformed
into independent variables by considering suitable groups
of spins (the droplets), as can be done for variables with
long range correlation [29], and then the theory of the ex-
treme deviations for the product of independent random
variables can apply [22]. This might suggest a deep link
between the anomalous relaxation in the Ising model and
the data sets that we analyze here. Let us also mention
that, up to the space dimension 3+1 for which numerical
simulations have been carried out [30], the distribution of
heights in the Kardar-Parisi-Zhang equation of non-linear
stochastic interface growth is also found to be a stretched
exponential.

We present the different data sets in the next sections
and provide in the appendix a short toolkit calculus for the
statistical analysis of stretched exponentials. The qualifi-
cation of stretched exponentials is particularly important
with regards to extrapolations to large events that have
not yet been observed.

2 Evidence of stretched exponentials
and comparison with other laws

In our analysis, we use the rank-ordering technique
[9,31,32] that amounts to order the variables by descend-
ing values Y1 > Y2 > · · · > YN , and plot Yn as a func-
tion of the rank n. Rank-ordering statistics and cumula-
tive plots are equivalent except that the former provides
a perspective on the rare, largest elements of a popula-
tion, whereas the statistics of cumulative distributions are
dominated by the more numerous small events. As a conse-
quence, statistical fluctuations describe the uncertainties
in the values of Yn for a given rank in the rank-ordering
method while they describe the variations of the number
of events of a given size in the cumulative representation.
This shows that the former statistics is better suited for
the analysis of the tails of pdf’s characterized by relatively
few events.

Within the rank-ordering plot, a stretched exponen-
tial is qualified by a straight line when plotting Y cn as a
function of log n, as seen from equation (3). A fit of the
straight line gives

Y cn = −a lnn+ b (4)
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Fig. 2. Galaxy’s radio and light intensities: “stretched expo-
nential”.

corresponding to

x0 = a1/c. (5)

Indeed, the definition (3) of the cumulative distribu-
tion Pc(x) = exp[−(x/x0)c] for the stretched exponen-
tial means that lnPc(x) = −(x/x0)c. Since Pc(x) = n/N ,
where n is the number of events larger or equal to x,
hence n is the rank, we obtain (4) immediately. The anal-
ysis of [22] predicts that multiplicative processes lead to a
stretched exponential of the form

Pc(x) = exp[−m(x/σ)1/m/λ], (6)

where the index c stands for the cumulative distribution,
defined by expression (3). Here,

m = 1/c (7)

is the number of levels in the multiplicative cascade. σ is
the unit of the variable x, such that x/σ is dimensionless.
λ is a typical multiplicative factor defined by the fact that
x/σ is the product of m random dimensionless variables of
typical size λ. We see that a fit to a data set by a stretched
exponential gives access only to the product σ1/mλ by the
relation x0 = cσcλ.

In order to interpret correctly the meaning of x0, the
appendix shows that the mean 〈x〉 is given by

〈x〉 = x0Γ (1/c)/c, (8)

where Γ (x) is the gamma function (equal to (x− 1)! for x
integer). When c is small, 〈x〉 will be much larger than x0.
x0 is thus not the average scale of x, but a reference scale
from which all moments can be determined. Another char-
acteristic scale x95% can be obtained such that the proba-
bility to exceed this value is less than 5% (corresponding
to a 95% level confidence). Using (6), this yields

x95% = 31/cx0. (9)

Notice that the figures and the fits are done using the
decimal logarithm. We thus convert the values of the fits
to the natural logarithm to estimate these numbers.

The intuitive interpretation of the three parameters a,
b and c of the stretched exponential rank ordering fit (4)
is the following: b1/c is the size of the event of rank 1 (i.e.
the largest event in the population), x0 = a1/c according
to equation (5) is a characteristic scale from which one can
deduce the value of the mean and of various moments as
seen from equations (8, 9). Finally, the exponent c quan-
tifies the fatness of the tail of the stretched exponential,
the smaller the exponent, the fatter the tail. Within the
multiplicative model [22], its inverse is proportional to the
number of generations.

Figure 1 compares the stretched exponential model
with three other models also exhibiting a curvature in
the fractal display (log-log size-rank). These three models
are the following. The first one corresponds to a simple
parabola in the log-log plot, and is called the parabolic
fractal [21],

logSn = log S1 − a logn− b(logn)2. (10)

In expression (10), Sn is the size of rank n. The case
b = 0 recovers the usual linear log-log plot qualifying
a pure power law distribution. The introduction of the
quadratic term −b (log n)2 is a natural parametric addi-
tion to account for the existence of curvature in the log-
log plot. The three parameters log S1, a and b of the fit
with equation (10) have simple interpretations: log S1 is
the (decimal) logarithm the size of the event of rank 1
(i.e. the largest event in the population), a is the slope
(inverse of the power law exponent µ) for the largest val-
ues (smallest ranks) and b quantifies the curvature while
1/(a+b logn) is the apparent power law exponent. Solving
this quadratic equation for n as a function of Sn, we find
the corresponding cumulative distribution function (cdf)
giving the number of events n larger than Sn:

n = n0 exp
[
(1/
√
b) {log(Smax/Sn)}1/2

]
, (11)

where

Smax = S1 exp[a2/4b], (12)

and

n0 = e−a/2b. (13)

The most remarkable property of this parabolic fractal
distribution is the existence of a maximum Smax beyond
which the distribution does not exist. In other words, the
pdf and cdf of the parabolic fractal have finite compact
support. This is different from a finite-size effect leading
to a maximum size in a finite system as here the maximum
size remains finite even in the infinite asymptotic case.
This property contrasts the parabolic fractal from the
other distributions that are defined for arbitrarily large
arguments.

The second model is the curved shifted linear fractal

logSn = logS0 − a log(n+A), (14)
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Fig. 3. US Gulf of Mexico OCS: parabolic fractal.

and the last model we consider is the lognormal distribu-
tion (with standard deviation s and most probable value
m). We have chosen the parameters of these four models in
such a way that they approach each other the most closely
in the interval of ranks 5–500, as shown in Figure 1.

All these models need three parameters, one for nor-
malization and two that characterize the shape. As for the
weights of small events in this numerical simulation which
takes as element of comparison the overlap from rank 5
to 500, the smallest is the lognormal, then the stretched
exponential, then the parabolic fractal and last the shifted
linear fractal (which is completely linear beyond rank
100) in this numerical example. For the tail towards large
events, the thinner distribution is the parabolic fractal
(since it is limited), then the stretched exponential, then
the lognormal and last the shifted linear fractal.

2.1 Radio and light emissions from galaxies

There is an undergoing controversy on the nature of the
spatial distribution of galaxies and galaxy clusters in
the universe with recent suggestions that scale invariance
could apply [33–35]. Motivated by this question and the
relationship between galaxy luminosities and their spa-
tial patterns [36], we investigate the pdf of radio and
light intensities radiated by galaxies. The data is obtained
from [37]. The problem is that it is difficult to obtain a
complete distribution of the global universe as the obser-
vation are done by sectors and the universe is not homoge-
neous. It has been shown [21] that the rank-ordering plot
in log-log coordinates is not strictly linear for these data
sets and that a noticeable curvature exists. Figure 2 shows
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the radio intensity of the galaxies raised to the power
c = 0.11 as a function of the (decimal) logarithm of the
rank n and the light intensity of the galaxies raised to the
power c = 0.04 as a function of the (decimal) logarithm of
the rank n. The curves are convincingly linear over more
than five decades in n.

The best fit to the data for radiosources gives x0 ∼
4 × 10−8 for the radio emissions. From expression (8),
〈x〉 ≈ 9!x0 ≈ 1.6−3.2×10−2. Expression (9) gives x95% ∼
9 × 10−4. The best fit to the data gives x0 ∼ 2 × 10−34

for the light emissions. From expression (8), 〈x〉 ≈ 25!
x0 ≈ 1.6 × 1025 x0 ≈ 3 × 10−9. Expression (9) gives
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x95% ∼ 2× 10−22. In these cases where the exponent c is
very small, the reference scale x0 is very small compared
to a typical scale obtained from 〈x〉 or x95%. The large
uncertainties are due to the smallness of the exponent c
whose inverse is thus poorly constrained.

Theories of these radio and light emissions are poorly
constrained but, interpreted within the multiplicative cas-
cade model [22], this indicates of the order of 10-20 (resp.
25-50) levels in the cascade for radio (resp. light) emis-
sions. The factor two in the range of this estimation of
the number of levels stems from the choice of an exponen-
tial versus a Gaussian for the distribution of the variables
that enter in the multiplicative process (see [22] for more
details).

2.2 US GOM OCS oil reserve sizes

The determination of the distribution of oil reserves in
the world is of great significance for the assessment of the
sustainability of energy consumption by mankind (and es-
pecially by developed countries) in the future. The extrap-
olation of the statistical data may bring useful inference
on the rate of new discoveries that can be expected in
the future. It is thus particularly important to correctly
characterize the distribution. The data are usually confi-
dential and politically sensitive in OPEC countries where
quotas depend of reserves. Most of reserve databases are
unreliable. We have chosen the public data of the US OCS
(outer continental shelf) published in open file by MMS
(Mineral Management Service of the US Department of
Interior). We have found that it is important to select the
data within one unique natural domain. For oil reserves,
the domain is the Petroleum System defined by its source-
rock, i.e the genetic origin when most of previous studies
were carried out on tectonic classification.

In reference [21], it was noticed that the log-log rank-
ordering plot exhibits a sizable downward curvature, indi-
cating a significant deviation from a power law distribu-
tion.

Figure 3 shows the rank-ordering plot of oil field sizes
(in million barrels = Mb) in a log-log display by decades. It
is obvious that the largest fields were found first and that
the leftmost part of the curved plot for the smallest ranks
did not change during the last twenty years. This part of
the curve can be easily extrapolated with a parabola which
aim to represent the ultimate distribution of oil reserves
in the ground encompassing all smaller oil fields, many of
those that have probably not yet been discovered.

Figure 4 represents the same data raised to the power
c = 0.35 as a function of the (decimal) logarithm of the
rank n. An excellent fit to a straight line is found over al-
most three decades in ranks which provides a characteris-
tic size x0 = 3±1 using equation (5) and 〈x〉 ≈ x95% ≈ 80
using expressions (8, 9).

Interpreted within the cascade multiplicative model,
the value of the exponent c ≈ 1/3 corresponds to about
3 to 6 generation levels in the generation of a typical oil
field. On the same display, we have plotted the ultimate
curve of Figure 3 and obtain a linear fit for c = 0.21.
The ultimate curve is obtained by fitting the parabolic
fractal law to the first ranks in Figure 3. In this way, we
get a plausible asymptotic corresponding to the reliable
knowledge of all oil reservoirs in the earth. In this case
where the largest sizes are well known and the small ones
hidden, it is easier to extrapolate the plot in a log-log
display than in a log-power. The stretched exponential
may thus give us a clue as to the formation of the oil
fields but the parabolic fractal is probably better suited
for the extrapolation towards small oil fields. In particular,
the existence of a maximum size that characterizes the
parabolic fractal distribution is well-adapted to account
for this real data set.

2.3 World, US and French urban agglomeration size
distributions and UN population per country

Urban agglomerations provide an example of self-
organization that has recently been studied from the
point of view of statistical physics of complex growth pat-
terns [38]. A model has been proposed [39] in terms of
strongly correlated percolation in a gradient that accounts
reasonably well for the morphology of large cities and their
growth as a function of time. The distribution of areas oc-
cupied by secondary towns around a major metropole has
been found approximately to be a power law [39]. Here,
we analyze the distribution of urban agglomeration sizes.
The term agglomeration refers to the natural geographic
limits (defined by the continuity of the buildings (no gap
larger than 200 m) as opposed to the artificial adminis-
trative boundaries that give spurious results. We take the
population as the proxy for the agglomeration size.

Figure 5 shows the rank-ordering plot of agglomeration
sizes (larger than 100 000 inhabitants) in the US (United
Nation demographic yearbook 1989) raised to the power
c = 0.165 as a function of the (decimal) logarithm of the
rank n. An excellent fit to a straight line is found over
more than two decades in ranks which provides a refer-
ence scale x0 = 20± 2 using equation (5) and the typical
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agglomeration size 〈x〉 ≈ x95% ≈ 15 000, using expressions
(8, 9).

Figure 6 displays the data on a log-log format with
the best fit with the different laws discussed above. The
shifted linear fractal model is taken from the book of Gell-
Man [15]. We use the cumulative distributions for each of
the models to get the rank ordering plot. The best fit for
each model is extrapolated from the city size of 100 000 in-
habitants down to the extreme minimum size of one person
to test which model predict the best the total size of the
population in cities of size less than 100 000 inhabitants.
The total population in 1989 of the US was 243 million.
The 258 agglomerations over 100 000 people account for
187 million persons. The rest, which represents 56 million
persons, live in cities smaller than 100 000 inhabitants.
The extrapolations of the different models provide a pre-
diction for this number of people in cities smaller than
100 000 inhabitants. The stretched exponential predicts
28 million, the parabolic fractal predicts 46 million and
the shifted linear fractal predicts 97 million. In this case,
the best fit is obtained with the parabolic fractal distri-
bution. It is not surprising that the stretched exponen-
tial underperforms as it is justified theoretically from [22]
strictly for large events. We are nevertheless amazed by
how the stretched exponential can usually account for the
region of pdf’s far from the extreme, even in the center of
the distribution.

Figure 7 shows the rank-ordering plot of agglomeration
sizes (larger than 100 000 inhabitants) in France raised to
the power c = 0.18 (notice the robustness of the exponent
compared to the US case) as a function of the (decimal)
logarithm of the rank n. An excellent fit to a straight
line is found over about two decades in ranks which pro-
vides a reference scale x0 = 7± 1 using equation (5) and
the typical agglomeration size 〈x〉 ≈ 288 x0 = 1800 and
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x95% ≈ 2900, using expressions (8, 9). Notice the existence
of an outlier, Paris, which is much above the extrapolation
of the straight line. This has been coined the “king” effect
(the new King kills the barons to avoid competition and
to acquire a wealth above the commoners!) [21].

Figure 8 shows the rank-ordering plot of agglomeration
sizes (larger than 100 000 inhabitants) in the world [40]
raised to the power c = 0.13 (notice again the relative ro-
bustness of the exponent compared to the US and French
case) as a function of the (decimal) logarithm of the rank
n. An excellent fit to a straight line is found over more
than four decades in ranks notwithstanding the fact that
the database is probably not perfect as several hundreds
of people are missing from the counting in crowded coun-
tries like China and India. The fit shown in the figure pro-
vides a reference scale x0 = 0.03 using equation (10) and
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the typical agglomeration size 〈x〉 ≈ 2.1 × 104 x0 = 600
and x95% ≈ 120, using expressions (8, 9). The fact that
〈x〉 is much larger than x0 reflects the fat tail nature of
the distribution with the small exponent c.

Figure 9 shows the rank-ordering plot of country pop-
ulation sizes in the world reported by the United Nations
(Urban agglomeration 1996). Each country population has
been raised to the power c = 0.42. A good fit to a straight
line is found over more than two decades in ranks. The
fit shown in the figure provides a reference scale x0 = 7
million using equation (10) and the typical country size
〈x〉 ≈ 19.5 million and x95% ≈ 91 million, using expres-
sions (8, 9). Notice the existence of two outliers or “kings”,
China and India.

2.4 Daily Forex US-Mark and US-Franc price variations

Stock market prices fluctuate under the action of many
factors and the precise characterization of the distribution
of price variations has important applications for option
pricing, portfolio optimization and trading. In addition,
from a theoretical point of view, it constraints the models
of the stock market. Historically, the central limit theorem
led to the first paradigm in terms of Gaussian pdf’s that
was first put in doubt by Mandelbrot [41] when he pro-
posed to use Lévy distributions, that are characterised by
a fat tail decaying as a power law with index µ between
0 and 2. Recently, physicists have characterised more pre-
cisely the distribution of market price variations [42,43]
and found that a power law truncated by an exponen-
tial provides a reasonable fit at short time scales (much
less than one day), while at larger time scales the dis-
tributions cross over progressively to the Gaussian distri-
bution which becomes approximately correct for monthly
and larger scale price variations. Alternative representa-
tions exist in terms of a superposition of Gaussian pdf’s
corresponding to cascade models inspired from an anal-
ogy with turbulence [44]. These two classes of descriptions
can only be distinguished using higher order statistics that
seem to favor the cascade description [45].

The daily time scale is the most used for practical
applications but is unfortunately fully in the cross-over
regime between the truncated Lévy law at the shortest
time scales and the asymptotic Gaussian behavior at the
largest time scales. It has thus been poorly constrained.
Here, we show that a stretched exponential pdf provides a
parsimonious and accurate fit to the full range of currency
price variations at this daily intermediate time scale. We
present two different data dealing with foreign exchange
rates. The foreign exchange market is slightly different
from the other financial markets such as the stock market
for instance since one does not exchange a valuable against
money, but a currency for another currency. The foreign
exchange is the most active market in the world with a
daily turnover of more than a trillion US dollars, with a
large part of the trades being done for hedging and specu-
lative purposes. These transactions concern only some ma-
jor currencies with the US dollar implied in 80% of them.
The deutschmark (DEM) is the second major currency
with 20% of the transactions are exchanges between US
dollars and DEM. Contrary to the other financial markets,
the foreign exchange market is a 24 hours global market.
See [46] for more informations.

The first data is represented in Figure 10 which shows
the positive and negative variations of the US dollar ex-
pressed in German marks during the period from 1989 to
the end of 1994. We use again the rank-ordering represen-
tation and plot in Figure 10a the nth price variation (posi-
tive with square symbols and negative with diamond sym-
bols) in log-log coordinates. Figure 10b plots the nth price
variation (positive with square symbols and negative with
diamond symbols) taken to the power c = 0.87 and 0.90
respectively as a function of the decimal logarithm of the
rank. We observe an excellent description by the almost
same straight line over the full range of quotation varia-
tions for both the positive and negative variations. This
shows that the pdf is approximately symmetric: there is
essentially the same probabibility for an appreciation or a
depreciation of the US dollar with respect to the German
mark. Notice that the apparent slight deviations above
the straight line for the largest variations are completely
within the expected error bars. The best fit to both pos-
itive and negative variations with equation (4) gives the
same consistent values a = 0.008 and b = 0.06 ± 0.005.
From this, we obtain x0 = 0.5%, and from expressions
(8, 9), we get 〈x〉 ≈ 1.09x0 ≈ 1% and x95% ≈ 1.7%.

Figure 11a plots the nth price variation for the French
Franc expressed in German marks (in the period from
1989 to the end of 1994) with the positive variations
represented with square symbols and the negative varia-
tions represented with diamond symbols) in log-log coor-
dinates. Figure 11b plots the nth price variation (positive
with square symbols and negative with diamond symbols)
taken to the power c = 0.72 and 0.64 respectively as a
function of the decimal logarithm of the rank. We observe
an excellent description with straight lines over the full
range of quotation variations. Two important differences
with the $/Mark case are noteworthy. First, the expo-
nent c is smaller, which corresponds to a “fatter” tail, i.e.
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Fig. 10. (a) Variation of DM/$: parabolic fractal. (b) Varia-
tions of DM/$: stretched exponential.

the existence of larger variations. The dynamics of
Franc/Mark exchange rate is thus wilder than that of the
two stronger currencies $/Mark. Secondly, the coefficients
a and b of the positive and negative exchange rate varia-
tions are different, characterizing a clear asymmetry with
larger negative variations of the Franc expressed in Marks.
This asymmetry corresponds to a progressive depreciation
of the Franc with respect to the Mark. One could have
imagined that such a depreciation would correspond to a
steady drift on which are superimposed symmetric varia-
tions. We find something else: the depreciation is putting
its imprints at all scales of price variations and is simply
quantified, not by a drift, but by a different reference scale
x0.

The best fit to the positive variations of the
Franc/Mark exchange rate with equation (4) gives a =
0.014 and b = 0.10. From this, we obtain x0 = 0.12%,
and from expressions (8, 9), we get 〈x〉 ≈ 1.4x0 ≈ 0.17%
and x95% ≈ 5.6x0 ≈ 0.7%. The difference between 〈x〉 and
x95% illustrates clearly the wilder character of the fat tail
of the Frank-Mark exchange rate variations compared to
the $/Mark.

The best fit to the negative variations of the
Franc/Mark exchange rate with equation (4) gives
a = 0.0095 and b = 0.07. From this, we obtain x0 = 0.16%,
and from expressions (8, 9), we get 〈x〉 ≈ 0.2% and
x95% ≈ 4.6x0 ≈ 0.7%. The difference between 〈x〉 and
x95% illustrates clearly the wilder character of the fat tail
of the Frank-Mark exchange rate variations compared to
the $/Mark and the fact that the depreciation of the Franc
can occur by large and sudden drops rather than according
to a steady drift.

To sum up this subsection, we have found that the
stretched exponential quantifies in a remarkably simple
and illuminating way the difference between the exchange
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rate between two strong currencies and between a strong
and a weaker currency. This quantification uses only the
two adjustable parameters c and x0 that represent the
fatness of the tail of the stretched exponential pdf and its
reference scale.

2.5 Raup-Sepkoski’s kill curve

It has been argued that the histogram of biological extinc-
tion events over the last 600 million years obtained from
the fossil record “can be reasonably well fitted to a power
law with exponent between 1 and 3” (see [16] p. 165).
Figure 12a reproduces the data from Sepkoski’s compila-
tion [47] in the log-log plot of the cumulative distribution
with inverted axis (a rank-ordering plot). Notice that the
rank does not start at n = 1 but at the rank of the order
of 60 because there are about 60 Genera that have a life
span larger than 150 millions years and the data are not
precise enough to distinguish between these 60 Genera.
The plot does not show any straight line whatsoever but
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Fig. 12. (a) Raup’s kill curve: Bak “How nature works?” Fig-
ure 39 p. 165. (b) Raup’s kill curve: “stretched exponential”.

rather a systematic downward curvature (very close to a
parabola) implying a much “thinner” tail than predicted
by a power law. The fit is carried out using the parabolic
fractal given by equation (10). The fit is very good and
suggest that there might be a maximum lifespan of about
350 millions years for species as predicted from equation
(12). Figure 12b shows the alternative rank-ordering plot
of the lifespans measured in million years raised to the
power c = 0.85 as a function of the (decimal) logarithm
of the rank n.

The curve is less convincing than for the previous ex-
amples as it exhibits a sigmoidal shape, but the data are
much more difficult to obtain and probably much less re-
liable. However, a straight line provides a reasonable fit
over about two decades in ranks. This provides a refer-
ence scale x0 = 22 million years using equation (5) and
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the typical lifespans 〈x〉 ≈ 1.09x0 ≈ 25 million years and
x95% ≈ 3.6x0 ≈ 82 million years, using expressions (8)
and (9). These numbers seem very reasonable when look-
ing directly at figure 39 of reference [16] p. 165.

2.6 Earthquake size and fault displacement
distributions

The well-known Gutenberg-Richter law gives the number
of earthquakes in a given region (possibly the world) with
magnitude larger than a given value. Translated into seis-
mic moment (roughly proportional to energy released),
the Gutenberg-Richter law corresponds to a power law
distribution (1) with an exponent µ close to 2/3. µ being
smaller than 1, the average energy released by earthquakes
is mathematically infinite, or in other words it is controlled
by the largest events. There must thus be a cross over
to another regime falling faster and several models have
previously been discussed, in terms of another power law
for the largest earthquakes with exponent µ larger than 1
[31,48] or in terms of a Gamma distribution correspond-
ing approximately to an exponential tail [49]. It is thus
sometimes found that the Gutenberg-Richter law is too
much linear [50]! Here, we reexamine the worldwide Har-
vard catalog (see [31] for a description and an analysis
in terms of rank-ordering with power law distributions)
containing the 1300 largest earthquakes in the world from
1977 to 1992. Figure 13a shows the rank-ordering plot of
the nth seismic moment as a function of the rank n in the
usual log-log representation. A clear bending is observed
that can be well-fitted by the parabolic fractal distribu-
tion (formula (10)). Figure 13b shows the rank-ordering
plot of the nth seismic moment raised to the power c = 0.1
as a function of the logarithm of the rank n. A fit by a
stretched exponential distribution is also very good. Both
models fit very well and are similar for the extrapolation
towards the smallest events. The choice of one model is
however of significant consequence for the prediction of the
size of the next largest earthquake. The parabolic fractal
is in the present case ill-suited as it predicts a maximum
size close to the largest observed event. This is probably
underestimated and a stretched exponential extrapolation
is probably to be prefered.

The distribution of fault displacements has been stud-
ied quantitatively to go beyond the usual geometrical de-
scription and quantify the relative activity of faults within
complex fault networks. Fault displacements provide a
long-term measurement of seismicity and are thus impor-
tant for seismic hazard assessment and long-term predic-
tion of earthquakes [51]. In contrast to a widespread be-
lief, the distribution is not a power law as seen in figure
14a which represents the rank-ordering plot of the nth
largest displacement of seismic faults [52] as a function of
the nth rank in log-log coordinates. The curvature is very
strong and is fitted to the parabolic fractal. Figure 14b
qualifies essentially an exponential distribution since the
nth largest displacement raised to a power close to 1 is
linear in the logarithm (decimal) of the nth rank. The
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Fig. 13. (a) Seismic moments. (b) Seismic moments: stretched
exponential.

characteristic displacement is essentially given by the co-
efficient a of the fit equal to about 400/ ln(10) ≈ 180 m.

2.7 Temperature data over 400 000 years from Vostok
near the south pole

Isotope concentrations in ice cores measured at Vostok
near the south pole provide proxies for the earth temper-
ature time series over the last 400 000 years, with more
than 2600 data points [53]. A large research effort is fo-
cused at improving the reliability of this proxy and ana-
lyzing it to detect trends and oscillatory components that
might be useful for climate modelling and for the assess-
ment of present temperature warming trends [54]. To pre-
pare the following plots, we normalize the temperature
variations by the corresponding time interval. Figure 15a
represents the log-log rank-ordering plot of the nth largest
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normalized temperature variations (positive and negative
variations are treated separately) as a function of the nth
rank. The curvature is very strong and clearly excludes a
power law distribution. Figure 15b shows that a stretched
exponential distribution can account reasonably well for
both the distribution of positive and negative variations.
The difference in the exponent c for the positive and nega-
tive temperature variations is not statistically significant:
c ≈ 0.65. The same holds true for the characteristic value
x0 ≈ 13. We obtain, from expressions (8, 9) 〈x〉 = 17 and
x95% = 70. From this one-point statistical analysis, there
is not much difference between the positive and negative
temperature variations, with however a perceptible ten-
dancy for observing more often larger negative tempera-
ture variations (the curve for the negative variations is sys-
tematically above that for the negative variations). Over
this 400 000 year period and within this one-point statisti-
cal analysis, the temperature trend, if any, is more towards
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Fig. 15. (a) Vostok: variations of temperatures versus time:
parabolic fractal. (b) Vostok: variations temperatures versus
time; stretched exponential.

cooling than warming. Higher-order statistics, taking into
account correlations between successive times such as by
studying the time series directly, are needed to ascertain
any recent warming trend.

2.8 Citations of the 1120 most cited physicists
over the period 1981-June 1997

D.A. Pendlebury from the Institute for Scientific Informa-
tion has recently ranked by total citations the 1120 most
cited physicists over the period 1981-June 1997. The data
represent citations recorded over 1981-June 1997 to ISI-
indexed physics papers 1981-June 1997, and do not repre-
sent citations to books, to pre-1980 papers indexed by ISI,
or to any papers not indexed by ISI during 1981-June 97.
Figure 16a shows in log-log plot the dependence of Sn as
a function of rank n, where Sn is the total number of cita-
tions of the nth most cited physicist. One observes clearly
a curvature both for the smallest and the largest ranks,
excluding a power law distribution. If however one insists
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citations of the nth most cited physicist; (b) The total number
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in fitting this curve with a power law, one gets an appar-
ent average exponent µ around 1/0.36 ≈ 3. Figure 16b
shows Sn raised to the power c = 0.3 as a function of
the natural logarithm of the rank. The whole range (over
three decades in rank) is well-described by the stretched
exponential. From the parameters of the fit shown on
the figure, we obtain x0 = 2.7 using equation (5) and
the typical citation numbers 〈x〉 ≈ 25 and x95% ≈ 105.
For the physicists (to whom the present authors belong)
who do not appear in this aristocracy of the 1120 most
cited, it should come as a small satisfaction that it suf-
fices to have more than about 105 citations to be among
the 5% most cited physicists in the world! The 1120th
rank has 2328 citations (while the first rank has ten times
more): inserting this number 2328 in equation (3) and us-
ing the value x0 = 2.7, this shows that the 1120 most
cited physicists correspond to the fraction 5× 10−4 of the

total physicist population, a number that appears quite
reasonable.

We propose to rationalize the stretched exponential
again using the results of [22] for multiplicative processes.
It appears reasonable to involve a multiplication of factors
to account for the impact of a scientist. An author has a
large citation impact if he/her has (1) the ability to select
an good problem for investigation, (2) the competence to
work on it and carry out the work to completion, (3) the
ability to create or belong to a research group and make it
work efficiently, (4) the ability of recognizing a surprising
and worthwhile result, (5) gifts for writing clear and lively
papers, (6) the expertise, salemanship and dedication to
advertise his/her results. Similar ideas were put forward
by Shochley [55] who analyzed in 1957 the scientific output
of 88 research staff members of the Brookhaven National
Laboratory in the USA. He found a log-normal distribu-
tion which is the center of the limit distribution for the
product of a large number of random variables. The fact
that the extreme tail of the distribution that we analyze
here is a stretched exponential is of no surprise within this
model in view of the extreme deviation theorem [22].

3 Conclusion

Power laws are generally used to represent natural distri-
butions, often claimed to be power laws which represent
linear regressions in log-log plots. In reality however, the
plots often display linearity over a limited range of scales
and/or exhibit noticeable curvature. In some cases as in oil
field reserves and earthquake sizes, the small value of the
exponent would imply a diverging average, a result ruled
out by the finite size of the earth. Here, we have investi-
gated the relevance for a set of ten different data sets of
the family of stretched exponential distributions. We have
also compared the fits with a natural extension of the lin-
ear fits in log-log plots using a quadratic correction, which
leads to the so-called parabolic fractal distribution. The
stretched exponential seems to provide a reasonable fit to
all the data sets and has the advantage of a sound theoreti-
cal foundation. We have been however surprised to realize
that the stretched exponential pdf’s, that are supposed
theoretically to apply better for the rarest events, seem to
account remarkably well for the center of most of the ana-
lyzed distributions. Stretched exponential have a tail that
is “fatter” than the exponential but much less so that a
pure power law distribution. They thus provide a kind of
compromise between the two descriptions. Stretched ex-
ponentials have also the advantage of being economical
in their number of ajustable parameters. The parabolic
fractal is also a natural parametric representation, that
sometimes perform better for the natural (non-economic)
data sets and exhibits robustness in its parameters a
and b.

We thank D. Stauffer for very useful comments and sugges-
tions and D. A. Pendlebury from the Institute for Scientific
Information for the data on physicist citations.
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Appendix

Using the parametrization (2)

P (x)dx = c(xc−1/xc0) exp[−(x/x0)c]dx, (A.1)

we have

〈x〉 = x0(1/c)Γ (1/c), (A.2)

and

〈x2〉 = x2
0(2/c)Γ (2/c), (A.3)

where Γ (x) is the Gamma function.
Let us now give the most probable determination of

the parameters x0 and c. Using the maximum likelihood
method, we find

xc0 = (1/n)
n∑
i=1

(Y ci − Y
c
n ) (A.4)

where Y1 > Y2 > · · · > Yi > · · · > Yn are the n largest
observed values. This expression (A.4) provides the most
probable value for x0 conditioned on the knowledge of
the exponent c. The method of maximum likelihood also
allows us to get an equation for the most probable value
of the exponent c:

1/c =

[ n∑
i=1

(Y ci lnYi − Y
c
n lnYn)

]
/

[ n∑
i=1

(Y ci − Y
c
n )

]

− (1/n)
n∑
i=1

lnYi

which is implicit as c appears on both sides of the equality.
We now provide the distribution of extreme variations. We
ask what is the probability P (xmax > x∗) that the largest
value xmax among N realizations be greater than x∗:

P (xmax > x∗) = 1−

[
1− exp[−(x∗/x0)c

]N
∼= 1− exp{−N exp[−(x∗/x0)c]}. (A.5)

Denote p the chosen level of probability of tolerance for
the largest value xmax, i.e. P (xmax > x∗) = p. Inverting
(A5) yields

x∗ = x0{ln[−N/ ln(1− p)]}1/c. (A.6)

Table 1 is calculated for c = 0.7, x0 = 0.027 and N =
7500. The value x∗ = 0.062 is the usual estimate of the
typical largest value, corresponding to a probability of
37%.

Table 1.

p 1− 1/e = 0.63 1/2 0.1 0.01 0.001

x∗/x0 22.9 24.2 31.8 41.5 52.2

x∗ 0.062 0.065 0.086 0.112 0.141
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